2,039 research outputs found

    The design and synthesis of complexes for the activation of carbon dioxide

    Get PDF
    This thesis describes developments in the studies of the activation and use of carbon dioxide as a building block in synthesis by early transition metal complexes. The proposed route required the reaction of carbon dioxide with a metal-imido complex via a heterocumulene metathesis to produce an isocyanate. An attempt at the use of molybdenum-imido complexes for the process generated a novel low valent molybdenum bisimido complex with no success in the activation of carbon dioxide. Generation of simple 12-electron titanium-imido complexes showed successful heterocumulene metathesis with isocyanates to develop a novel methodology for the synthesis of carbodiimides and ureas. The studies of this methodology proved a fourmembered ring metallocycle was an intermediate and suggested the mechanism of the process as plausible, as well as showing the activation of carbon dioxide. Our studies were concluded by the generation and modification of titanium-imido complexes to synthesise families of complexes containing aromatic imido ligands, which showed no reactivity with carbon dioxide with the exception of the 2,6- diisopropylphenylimido ligand. Unsuccessful isolation of alkylimido titanium complexes impeded the generation of families of complexes. In situ generation of alkylimido titanium complexes showed activation of carbon dioxide to generate ureas, proposing two consecutive heterocumulene metatheses first with carbon dioxide and a second with the generated isocyanate. Studies with intermediates and comparisons with the generation of carbodiimides support this mechanism

    Impact data from a transport aircraft during a controlled impact demonstration

    Get PDF
    On December 1, 1984, the FAA and NASA conducted a remotely piloted air-to-ground crash test of a Boeing 720 transport aircraft instrumented to measure crash loads of the structure and the anthropomorphic dummy passengers. Over 330 time histories of accelerations and loads collected during the Full-Scale Transport Controlled Impact Demonstration (CID) for the 1-sec period after initial impact are presented. Although a symmetric 1 deg. nose-up attitude with a 17 ft/sec sink rate was planned, the plane was yawed and rolled 13 deg. at initial (left-wing) impact. The first fuselage impact occurred near the nose wheel well with the nose pitched down 2.5 deg. Peak normal (vertical) floor accelerations were highest in the cockpit and forward cabin near the nose wheel well and were approximately 14G. The remaining cabin floor received normal acceleration peaks of 7G or less. The peak longitudinal floor accelerations showed a similar distribution, with the highest (7G) in the cockpit and forward cabin, decreasing to 4G or less toward the rear. Peak transverse floor accelerations ranged from about 5G in the cockpit to 1G in the aft fuselage

    The physics of wind-blown sand and dust

    Full text link
    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This article presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.Comment: 72 journal pagers, 49 figure

    Increase of geometrical and positional fatty acid isomers in dark meat from broilers fed heated oils

    Get PDF
    Oxidation of polyunsaturated fatty acids leads to primary and secondary oxidation products. Compounds and amounts of these products vary, depending on the oxidative conditions. As these oxidation products have different absorption and biological effects, we performed two different heating treatments on sunflower oil. The first was heating the oil at 190-195"C for 28 h i.e. very oxidised oil); and the other, heating at 60"C for 12 days (i.e. pcroxidiscd oil). In the frame of this study, we compared the fatty acid composition of a refined sunflower oil (fresh oil), the pcroxidiscd oil, the very oxidised oil, and a mixture (1+1) of fresh and very oxidised oil (i.e. oxidised oil). Oil fatty acid compositions were affected by the heating treatments. In to addition, different fatty acid isomers were formed during heating at 190-I95°C and significant differences were found between thcir.contcnt in the sunflower oils. We also studied the effect of feeding broilers with these oils and Zn and tocopherol supplements on the fatty acid composition of their raw dark meat. Various Irons fatty acid isomers increased in dark meat from broilers fed oxidised and very oxidised oils. In addition, discriminant analysis showed that ditrans-CLA content was able to distinguish dark chicken meat from chickens fed sunflower oils heated at 190-195"C

    The application of GIS based decision-tree models for generating the spatial distribution of hydromorphic organic landscapes in relation to digital terrain data

    Get PDF
    Accurate information about organic/mineral soil occurrence is a prerequisite for many land resources management applications (including climate change mitigation). This paper aims at investigating the potential of using geomorphometrical analysis and decision tree modeling to predict the geographic distribution of hydromorphic organic landscapes in unsampled area in Denmark. Nine primary (elevation, slope angle, slope aspect, plan curvature, profile curvature, tangent curvature, flow direction, flow accumulation, and specific catchment area) and one secondary (steady-state topographic wetness index) topographic parameters were generated from Digital Elevation Models (DEMs) acquired using airborne LIDAR (Light Detection and Ranging) systems. They were used along with existing digital data collected from other sources (soil type, geological substrate and landscape type) to explain organic/mineral field measurements in hydromorphic landscapes of the Danish area chosen. A large number of tree-based classification models (186) were developed using (1) all of the parameters, (2) the primary DEM-derived topographic (morphological/hydrological) parameters only, (3) selected pairs of parameters and (4) excluding each parameter one at a time from the potential pool of predictor parameters. The best classification tree model (with the lowest misclassification error and the smallest number of terminal nodes and predictor parameters) combined the steady-state topographic wetness index and soil type, and explained 68% of the variability in organic/mineral field measurements. The overall accuracy of the predictive organic/inorganic landscapes' map produced (at 1:50 000 cartographic scale) using the best tree was estimated to be ca. 75%. The proposed classification-tree model is relatively simple, quick, realistic and practical, and it can be applied to other areas, thereby providing a tool to facilitate the implementation of pedological/hydrological plans for conservation and sustainable management. It is particularly useful when information about soil properties from conventional field surveys is limited

    Structural implications of the DFD-in domain in computer-aided molecular design of MAP kinase interacting kinase 2 inhibitors.

    Get PDF
    Protein translation is a key process on cell development and proliferation that is often deregulated in cancer. MAP kinase interacting kinases 1 and 2(Mnk1/2) play a pivotal role in regulating the capdependent translation through phosphorylation ofeIF4E transcription factor. Thus, Mnk1/2 targeting have been proposed as a novel therapeutic strategy that would minimize side-effects in contrast to other therapies. For this reason, there is a growing interestin designing in silico new Mnk1/2 inhibitors which demands from reliable structural models. Interestingly,the catalytic domain of Mnk proteins are characterized by a DFD motif instead of the characteristicDFG motif of other kinases. However, Mnk2 structural models described in literature are DFG mutated and do not contain the activation loop. Molecular design techniques have been applied to obtain a structural model of the full wild type Mnk2 protein including the activation loop. The effect of the loop on the interaction mechanism of well-known ligands has been evaluated. Obtained results suggest that the presence of the activation loop is determinant for the correct prediction of the active site and it is essential for the design of new inhibitors
    • …
    corecore